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LIST OF NOTATION

N Set of all natural numbers

Z Set of all integers

C Set of all complex numbers

A Generic algebra

L Loop

L Lower frame bound

U Upper frame bound

G Gram matrix

H Generic Hilbert space

K Generic Hilbert space

p Plaintext vector

m Dimension of plaintext

g Garbage (or noise) vector

c Ciphertext vector

C(X) Set of all continuous functions on an interval X

〈·, ·〉 Inner product

〈·, ·〉 Conjugate of the inner product

‖ · ‖ Norm of an inner product space

| · | Modulus of a complex number

L2[−T, T ] Set of all Lebesgue square-integrable functions on the interval [-T,T]

L∞[−T, T ] Set of all bounded measurable functions on the interval [-T,T]

{xj}j∈[N ] Finite sequence or set of vectors

{ej}Nj=1 Standard orthonormal basis for CN
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{hj}Nj=1 Standard orthonormal basis for a Hilbert space, H

X Frame given by the vectors {xj}Nj=1

ΘX Analysis operator for the frame X

Θ∗X Synthesis operator for the frame X

[xi]i∈[N ] Column vector x with entries x1, x2, ..., xN

[xi]∗i∈[N ] Row vector x with entries x1, x2, ..., xN

0 Matrix whose entries are all zero; dimension inferred from context

I Identity matrix; dimension inferred from context

A Hadamard array H[m, k, λ]

±a1,±a2, ...,±ak Set of elements in a Hadamard array

λ Number of elements of type aj in each row and each column of a Hadamard array, A

di Dimension of a Hadamard array

A⊗B Tensor product of two matrices A and B
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CHAPTER 1. INTRODUCTION

Cryptography, the art of hiding data, relies heavily on invertible mathematical functions.

Mathematicians and computer scientists have explored a plethora of mathematical concepts in

their quest to develop an unbreakable cryptosystem. In this paper, we investigate the use of

finite frame theory in cryptography.

At first glance, finite frames seem ideal for cryptography. Although similar to a basis for a

Hilbert space, frames contain redundancy that could be used to hide data. Another property

is that any vector in a Hilbert space can be reconstructed using a frame and its dual frame.

However, these properties can also be used to break cryptosystems that use them.

In 2004, Miotke and Rebollo-Neira published a theoretical private key encryption scheme

using infinite frames and oversampling of Fourier coefficients [MRN04]. In 2005, Harkins,

Weber, and Westmeyer, published a set of private key encryption schemes using finite frames

and Hadamard arrays [HWW05]. Both of these schemes use the same frame theory structure.

Once a cryptosystem is developed, it is important to find out if it is vulnerable to an attack.

In [HWW05], the authors showed that their system was vulnerable to a chosen ciphertext

attack. Later in 2005, Bhatt, Kraus, Walters, and Weber published a paper [BKWW06]

showing that the general cryptosystem used in both [MRN04] and [HWW05] was vulnerable

to a known plaintext attack.

This paper begins with an introduction to cryptography and the mathematical concepts

used in these cryptosystems. Then, it goes into the details of the cryptosystems and proves a

few of the details left out of the published papers. Next, the vulnerabilities of these systems

and two types of attack are explained. We conclude that this particular use of frame theory in

cryptography is not secure and other avenues should be explored. We open the door for future

research by questioning why Hadamard matrices can be used in cryptography.
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CHAPTER 2. BACKGROUND ON CRYPTOGRAPHY

Cryptography is the science of disguising data so that only the sender and recipient can

read the data. Suppose a student wanted to buy a textbook online from Amazon.com. The

student must enter her credit card number and security code. However, many people could

intercept the data as it flies through the Internet on its way to the financial department of

Amazon.com. If a criminal found the student’s credit card number and security code, he

could buy many items online and the student may be charged. Therefore, it is important to

disguise the credit card number and security code, so that only the student and the financial

department at Amazon.com know the correct numbers.

Cryptographers call the data they want to send plaintext, usually converted into a string of

integers between 0 and 255, inclusive. We think of this string as a vector in a vector space. The

process of disguising the data is encryption. Encryption is a one-to-one mathematical function

that requires a key (a unique number or set of numbers) and a plaintext as input to produce

the encrypted text or ciphertext. The ciphertext, a new string (or vector) of integers between

0 and 255, can be converted back to the same medium as the plaintext and sent through

the mail, Internet, or any other mode of data transportation. Once the receiver obtains the

ciphertext, he applies a process called decryption. Decryption is the inverse mathematical

function of encryption which takes a key and a ciphertext as input to reproduce the plaintext.

The domains of the plaintext and ciphertext along with the keys, encryption function, and

decryption function make up a cryptosystem.

A good cryptosystem is one that is computationally efficient and requires little storage

space. Cryptographers are encouraged to develop systems that have a small key size, so that

the keys are easy to share through covert channels; for example, short verbal communication,

an encrypted email or disguised postal letter. The cryptosystem must also be secure against
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attack. Most cryptographers use Kerckhoffs’ Principle and knowledge of four basic attacks,

described below, when creating their cryptosystems.

The following version of Kerckhoffs’ Principle is quoted from Data Privacy and Security by

Salomon [Sal03].

Theorem 2.1 (Kerckhoffs’ Principle). One should assume that the method used to encipher

data is known to the opponent, and that security must lie in the choice of the key. This does

not necessarily imply that the method should be public, just that it is considered public during

its creation. –Auguste Kerckhoffs

Cryptanalysis is the art and science of decoding an encrypted message without knowing the

keys. Cryptanalysis can be compared to finding the quickest and safest method of breaking

into a house without the keys. Many view cryptanalysts as malicious and call them hackers,

enemies, or adversaries. However, the tools, theory, and knowledge gained through cryptanal-

ysis are essential. Law enforcement can use cryptanalysis to stop terrorism, child pornography,

and fraud. If the government can decrypt emails, financial data, and other information stored

on a terrorist’s computer or website, then they may be able to save hundreds of lives by thwart-

ing the terrorist’s plans. Also, the information cryptanalysts discover while trying to break a

cryptosystem can help cryptographers create stronger more secure systems.

There are four basic types of attacks cryptanalysts use to break a cryptosystem.

• Ciphertext Only Attack. In a ciphertext only attack, the adversary only has access to

strings of ciphertexts. For example, suppose we have a substitution cipher, one in which

we create a mapping from the English letters to a permutation of the letters. Then, one

can use statistical properties of the English language to figure out what the message says.

A cryptosystem is considered extremely weak if it is susceptible to this type of attack

because this is the most difficult and time consuming way to discover the key used in the

cryptosystem. A ciphertext only attack also usually requires extensive computational

power.

• Known Plaintext Attack. In a known plaintext attack, the adversary has access to a set

of plaintexts and their corresponding ciphertexts. For example, if it is known that the
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cryptosystem is a specific linear transformation, then one can try to use mathematical

properties of the linear transformation and the pairs of text to compute the key. A

cryptosystem is considered weak if it is susceptible to this type of attack using current

computational technologies. The RSA cryptosystem is a system that uses computa-

tions in Zn where n is the product of two prime numbers. As of the writing of this

paper, the largest factorable number using general purpose algorithms has 200 digits1

and was found in 2005 according to the “General Purpose Factoring Records” [Con08].

Thus, we suspect that the RSA cryptosystem is considered secure if the cryptosystem

uses a modulus n that is more than 200 digits. For more information about factoring

records and large prime numbers see http://www.crypto-world.com/FactorRecords.html

and http://primes.utm.edu.

• Chosen Plaintext Attack. In a chosen plaintext attack, the adversary obtains temporary

access to the encryption machine. He can input any message he wants and see the

ciphertext that it creates.

• Chosen Ciphertext Attack. In a chosen ciphertext attack, the adversary obtains tempo-

rary access to the decryption machine. He can input any ciphertext he chooses and see

the message that produced it.

These last two attacks are more difficult to implement than the known plaintext attack

or ciphertext only attack because gaining access to the encryption or decryption machine is

usually more difficult than gaining a list of ciphertexts and/or plaintexts. Also, the chosen

plaintext and chosen ciphertext attacks are more successful when the adversary’s chosen texts

are within a narrow range, so more strategic planning is usually necessary. If one can prove that

a cryptosystem is secure against these four types of attacks, even if the attacker has infinite

computational resources, then it is highly probable that the cryptosystem is not susceptible to

attack. However, there are always other methods of attack being developed.
1In May 2007, an international team from EPFL, the University of Bonn, and NTT in Japan announced

that they had factored a 307-digit number (21039 − 1) using the “special number field sieve” method created
in the late 1980’s. For more information see the EPFL website, specifically http://actualites.epfl.ch/presseinfo-
com?id=441.
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For more information about cryptography and the use of mathematics in cryptography, see

Stinson’s Cryptography: Theory and Practice [Sti02].
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CHAPTER 3. BACKGROUND ON MATHEMATICAL CONCEPTS

Cryptographers can use almost any branch or branches of mathematics to develop a cryp-

tosystem. We are learning, however, that some branches are better suited for cryptography

than others. In this chapter, we explore the definitions and theorems associated with frame

theory; the specific area of math chosen by Miotke and Rebollo-Neira in [MRN04] and Harkens,

Weber, and Westerner in [HWW05] to build their cryptosystems. We also explain the two areas

of mathematics that these authors use to reduce the key size of their cryptosystems, namely

Fourier analysis and Hadamard arrays.

3.1 Finite Frame Theory

The underlying foundation of frame theory is a Hilbert space. In order to understand

what a Hilbert space is, we need to remember the definition of a Cauchy sequence. A Cauchy

sequence is a set of vectors {xj} in an inner product space such that for all ε > 0, there exists

M ∈ N such that for all k, l > M , ||xk − xl|| < ε. An inner product space in which every

Cauchy sequence converges is called complete. A Hilbert space, H, is a complete inner product

space.

According to Folland in Real Analysis [Fol84], one of the most useful Hilbert spaces is

the L2 space because many important operations are bounded on L2, such as the Fourier

transformation. The set of all Lebesgue square-integrable functions on the interval [−T, T ] ∈ C

is denoted by L2[−T, T ]. It has the inner product, 〈f(t), g(t)〉 =
∫ T
−T f(t)g(t) dt, and the 2-

norm, ||f(t)||2 =
√
〈f(t), f(t)〉. The Riesz-Fisher Theorem states that H = L2[−T, T ] is a

Hilbert space, see Royden [Roy88].

A finite frame is a finite sequence of vectors {xj}j∈[N ] ⊂ H for which there exist constants
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0 < L ≤ U <∞ such that for all vectors x ∈ H,

L||x||2 ≤
∑
j

|〈x, xj〉|2 ≤ U ||x||2.

We call L and U the lower and upper frame bounds, respectively. The fact that a frame spans

the Hilbert space is proven as Proposition 3.18 in Frames for Undergraduates [HKLW08].

The reason cryptographers think frame theory is an interesting mathematical tool is that

frames allow any vector in the Hilbert space to be reconstructed. The following theorem states

that, given any frame for a Hilbert space, there exists another frame, called the dual frame,

such that any vector can be reconstructed by the given formula.

Theorem 3.1 ([HKLW08], Prop. 3.19). Let {xj}Nj=1 be a frame for a Hilbert space H. Then

there exists a frame {yj}Nj=1 such that every x ∈ H can be reconstructed with the formula:

x =
∑N

j=1〈x, yj〉xj =
∑N

j=1〈x, xj〉yj.

Proof. See [HKLW08] for a proof.

The proof of the above theorem uses the concept of an analysis operator. Given a finite

frame X = {xj}Nj=1 ⊂ H, the analysis operator ΘX is defined as a linear operator from the

Hilbert space to the complex plane given by

ΘXx =


〈x, x1〉

...

〈x, xN 〉

 =
N∑
j=1

〈x, xj〉ej

where {ej}Nj=1 is the standard orthonormal basis of CN . It is shown in [HKLW08] that ΘX

is one-to-one and has a synthesis operator, Θ∗X, such that Θ∗XΘXx =
∑N

j=1〈x, xj〉xj . It is

helpful to note that analysis and synthesis operators can easily be written as matrices. Let

each vector [xj ]∗ be a row in the matrix ΘX of an analysis operator. Then, the matrix Θ∗X

whose columns are the vectors [xj ] is the matrix of the synthesis operator. Since [xj ][xk]∗ =

〈xj , xk〉 = 〈xk, xj〉 = [xk][xj ]∗, we know that G = ΘXΘ∗X is a Hermitian matrix whose entries

are given as inner products, also known as a Gram matrix. From linear algebra, we remember

that Hermitian matrices have real nonnegative eigenvalues.
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Two special types of frames are enticing to cryptographers because their properties make

calculations easier. A tight frame is a frame whose upper and lower bounds are equal. If the

upper and lower bounds equal one, then it is called a Parseval frame. The following theorem

proves that if there exists a set of vectors that forms an orthonormal basis for the Hilbert

space, then the set of vectors forms a Parseval frame.

Theorem 3.2 (Parseval’s Identity). Let {hj}Nj=1 be an orthonormal basis for a Hilbert Space,

H. Then, for all vectors x ∈ H, ||x||2 =
N∑
j=1

|〈x, hj〉|2.

Proof. See [HKLW08] for a proof (page 32).

Another reason frames are interesting to cryptographers is that they have many of the same

properties as matrices. Frames can be a basis for a linear space. However, they are usually

more than a basis and allow for redundant vectors while still spanning the space. Frames can

also be orthogonal to each other. Two frames X and Y are orthogonal if Θ∗XΘY = 0 where ΘX

and ΘY are the analysis operators for X and Y, respectively [HKLW08].

3.2 Fourier Analysis

In [MRN04], the authors use Fourier analysis to create their cryptosystem. Before we can

understand the claims they made, we need a few definitions and theorems from analysis.

From Saff and Snider in Fundamentals of Complex Analysis [SS03], we learn, that given

any periodic, continuously differentiable function, f(t), on an interval [−T, T ], we can represent

f(t) as a Fourier series, an infinite sum of complex exponentials,

f(t) =
∞∑
−∞

cne
2πint/2T

where the Fourier coefficients, cn, are computed using integration,

cn =
1

2T

∫ ∞
−∞

f(t)e−2πint/2T dt.

It is helpful to know that these complex exponentials form an orthonormal basis for

L2[−T, T ]. Folland [Fol84] states and proves this in a general sense. We state a version
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for the set
{

1√
2T
eiπnt/T

}
n∈Z
⊂ L2[−T, T ] and prove it here to help the reader make the con-

nections between Hilbert spaces, frame theory, Fourier series and the cryptosystem presented

in [MRN04]. Before we prove our theorem, we will prove four lemmas. The first identifies the

relationship between the Hilbert space L2 and the space of all bounded measurable functions

L∞. It shows that every element in L∞ is also an element of L2 and the 2-norm of an element

is less than a constant times the infinity-norm of the element. The second, third, and fourth

lemmas show that the set of complex exponentials
{

1√
2T
eiπnt/T

}
n∈Z
⊂ L2[−T, T ] is normal,

orthogonal, and complete.

Lemma 3.3. L∞[−T, T ] ⊂ L2[−T, T ] and || · ||2 ≤
√

2T || · ||∞.

Proof. Let f(t) ∈ L∞[−T, T ]. Then ||f(t)||∞ = inf{M |m{t ∈ (−T, T ) : |f(t)| > M} = 0} = c

for some constant c ≥ 0. Note that |f(t)| ≤ c for all t ∈ [−T, T ] except on a set of measure

zero. Thus,

|f(t)| ≤ c

|f(t)|2 ≤ c2∫ T

−T
|f(t)|2 dt ≤

∫ T

−T
c2 dt(∫ T

−T
|f(t)|2 dt

)1/2

≤
(∫ T

−T
c2 dt

)1/2

||f(t)||2 ≤
√

2Tc

||f(t)||2 ≤
√

2T ||f(t)||∞

Therefore, f(t) ∈ L2[−T, T ] which implies L∞[−T, T ] ⊂ L2[−T, T ] and ||f(t)||2 ≤
√

2T ||f(t)||∞.

Lemma 3.4. The set
{

1√
2T

eiπnt/T
}
n∈Z
⊂ L2[−T, T ] is normal.
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Proof. A set is normal if every element has norm 1.∥∥∥∥ 1√
2T

eiπnt/T
∥∥∥∥2

2

=
∫ T

−T

(
1√
2T

eiπnt/T
)(

1√
2T

e−iπnt/T
)
dt

=
∫ T

−T

1
2T

dt

= 1

Lemma 3.5. The set
{

1√
2T

eiπnt/T
}
n∈Z
⊂ L2[−T, T ] is pairwise orthogonal.

Proof. Two elements are orthogonal if 〈f(t), g(t)〉 = 0. Note: n 6= m are integers, so n−m 6= 0

is also an integer. Thus, e2πi(n−m) = cos(2π(n−m))+ i sin(2π(n−m)) = 1 and eπi(n−m) = ±1.〈
1√
2T

eiπnt/T ,
1√
2T

eiπmt/T
〉

=
∫ T

−T

(
1√
2T

eiπnt/T
)(

1√
2T

e−iπmt/T
)
dt

=
∫ T

−T

(
1

2T
eiπt(n−m)/T

)
dt

=
e2πi(n−m) − 1

2πi(n−m)eπi(n−m)

= 0

Lemma 3.6. The set
{

1√
2T

eiπnt/T
}
n∈Z
⊂ L2[−T, T ] is complete.

Proof. Let ε > 0 and f(x) ∈ L2[−T, T ] be given. Then, we know that |f(x)|2 is integrable. By

Proposition 4.14 [Roy88], we know there exists a δ > 0 such that for [T−δ, T ],
∫ T
T−δ |f(x)|2 dx <(

ε
3

)2. Define g(x) = f(x) for x ∈ [−T, T − δ] and g(x) = 0 for x ∈ [T − δ, T ]. Thus,

||f(x)− g(x)||2 =

√∫ T

T−δ
|f(x)|2 dx < ε

3
(3.1)

Let X = [−T, T −δ], C(X) be the set of all continuous functions on X, gn(x) = 1√
2T
eiπnx/T

for n ∈ Z, and G(X) be the set of all linear combinations of gn. Note that G(X) ⊂ C(X) ⊂

L2[−T, T − δ] and the norm on L2[−T, T − δ] is || · ||2.

Claim: G(X) is a closed subalgebra that separates points.
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Before we begin the proof of our claim. We give a few definitions.

• Complex Algebra. The set A is said to be a complex algebra if it is a complex

subspace of C(X) where X is a Hausdorff space such that fg ∈ A whenever

f ∈ A and g ∈ A.

• Complex Subalgebra. A subset of a complex algebra that is itself a complex

algebra.

• Separate Points. A set A ∈ C(X) is said to separate points if for every x, y ∈ X

with x 6= y there exists f ∈ A such that f(x) 6= f(y).

Proof of Claim. Choose any two unique functions gn(x), gm(x) ∈ G(X) and any

constant c ∈ C. It is clear by the definition ofG(X) that cgn(x)+gm(x), gn(x)gm(x),

and gn(x) = g−n(x) are elements of G(X). Thus, G(X) is a complex subalgebra of

C(X) that is closed under complex conjugation.

Now we need to show that G(X) separates points. Suppose x 6= y ∈ X. Then

|x − y| < 2T . We proceed with a proof by contradiction. Suppose g1(x) = g1(y).

Then eiπ(x−y)/T = 1. Thus, there exists k 6= 0 ∈ Z such that π(x − y)/T = 2πk

which implies x − y = 2Tk. This is a contradiction to the fact that |x − y| < 2T .

Therefore, G(X) is a closed subalgebra that separates points.

By Littlewood’s second principle [Roy88], there exists a continuous function h(x) ∈ C(X)

such that ||g(x)− h(x)||2 < ε
3 .

Let A be the closure of G(X) with respect to the infinity norm, ||fn(x)||∞ = supx∈X fn(x).

By the Complex Stone-Weierstrauss Theorem [Fol84], A = C(X) because g0(x) ∈ A and

f0(x) = 1 for all x ∈ X. Therefore, there exists a polynomial p(x) =
∑N
−N cngn(x) such that

||h(x)− p(x)||∞ < ε
3
√

2T
.
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Hence,

||f(x)− p(x)||2 = ||(f(x)− g(x)) + (g(x)− h(x)) + (h(x)− p(x))||2

≤ ||f(x)− g(x)||2 + ||g(x)− h(x)||2 + ||h(x)− p(x)||2 (3.2)

≤ ||f(x)− g(x)||2 + ||g(x)− h(x)||2 +
√

2T ||h(x)− p(x)||∞ (3.3)

<
ε

3
+
ε

3
+
√

2T
ε

3
√

2T
(3.4)

= ε

The inequality (3.2) holds by the Minkowski Inequality, [Roy88]. The inequality (3.3) holds

by Lemma 3.3. The inequality (3.4) holds by equation 3.1. Therefore, there exist constants

{cn : −N ≤ n ≤ N} such that ||f(x) −
∑N
−N cnfn(x)||2 < ε, so

{
fn =

1√
2T

eiπnt/T
}
n∈Z
⊂

L2[−T, T ] is complete.

Theorem 3.7. The set E =
{

1√
2T

eiπnt/T
}
n∈Z
⊂ L2[−T, T ] forms an orthonormal basis for

L2[−T, T ].

Proof. The set, E, is a complete orthonormal set by Lemmas 3.4, 3.5, and 3.6. Complete-

ness implies that, given any function f(t) ∈ L2[−T, T ], there exist constants cn such that∑ cn√
2T
eiπnt/T converges absolutely to f(t), see Theorem 5.1 in [Fol84]. In other words, the set

E spans the Hilbert space L2[−T, T ]. Pairwise orthogonality of the elements implies that the

set is linearly independent. Therefore, E is an orthonormal basis of L2[−T, T ].

3.3 Hadamard Arrays

In order to understand the cryptosystem created in [HWW05], we need to know a few

definitions and theorems about Hadamard arrays and linear algebra.

A Hadamard array, denoted by A = H[m, k, λ], is an m × m matrix consisting of the

elements ±a1,±a2...±ak such that every row and every column has exactly λ elements of ±a1,

λ elements of ±a2 ,..., λ elements of ±ak. Also, each pair of rows and each pair of columns

must be orthogonal, i.e. their inner product is 0. Below is an example of A = H[4, 4, 1] with

elements A,B,C,D.
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A B C D

−B A D −C

−C −D A B

−D C −B A


It is useful to know the following things about Hadamard arrays when λ = 1: they can

only be of dimensions 1, 2, 4, or 8, their adjoint exists, and the product of a Hadamard array

and its adjoint is the identity matrix multiplied by a scalar.

Theorem 3.8. The following are properties of a Hadamard array, A = H[m, k, 1]:

1. m = k and m = 1, 2, 4, or 8.

2. A∗A = AA∗ = SI where S =
∑k

j=1 |a1j |2.

Proof. In his paper “Hadamard Designs” [Spe72], Spence uses the similarity of construction

between n-letter Hadamard designs and Hadamard arrays with λ = 1. A Hadamard design is

a square array of letters which commute in pairs and to which signs are attached, so that the

scalar product of any two distinct rows is zero. An n-letter Hadamard design is an n×n array

with n distinct elements in each row and each column. Thus, their matrix representation is

similar to that of a Hadamard array. Here is a sketch of his proof.

If A is a Hadamard array with λ = 1, then we can use elementary matrix operations to

make all elements in the first row and the first column positive and to ensure that the first row

is identical to the first column.

Next, create a block matrix, M , as below

M =

 A −A

−A A

 .
This matrix is a multiplication table of a loop L of order 2n with elementsA,B, ...N,−A,−B, ...,−N .

A loop is a pair (L, ·) where L is a nonempty set and (a, b)→ a · b is a closed binary operation

on L with the property that given any a, c ∈ L, there exists a unique element b such that

a · b = c. A loop also contains a two-sided identity element 1.

The loop satisfies the following:
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1. The center, Z has two elements 1,−1 such that (−1)2 = 1 and 1 6= −1.

2. If x ∈ Z, then x2 = −1.

3. If xy 6= yx, then xy = −yx and x, y generate a quaternion group.

4. If x(yz) = (xy)z, then x, y, z generate a subgroup.

The only loops satisfying these conditions are the cyclic groups of order 2 and order 4, the

quaternion group of order 8, and the Cayley loop of order 16. The cyclic group of order 2 can

be determined by a Hadamard array A = H[1, 1, 1], the cyclic group of order 4 by a Hadamard

array A = H[2, 2, 1], the quaternion group of order 8 by a Hadamard array A = H[4, 4, 1], and

the Cayley loop of order 16 by a Hadamard array A = H[8, 8, 1]. Therefore, the only possible

values for m and k are 1, 2, 4, or 8.

Now we can show that A = H[8, 8, 1], has an adjoint, and that the product of AA∗ =

A∗A = SI where S is a scalar. The proof that the smaller Hadamard arrays also have these

qualities is similar, so we will not include it here.

Let a, b, c, d, e, f, g, h be a set of distinct real numbers. Then the Hadamard array M , given

in [HWW05], shown below is similar to all possible Hadamard arrays A = H[8, 8, 1].

M =



a b c d e f g h

−b a d −c f −e −h g

−c −d a b g h −e −f

−d c −b a h −g f −e

−e −f −g −h a b c d

−f e −h g −b a −d c

−g h e −f −c d a −b

−h −g f e −d −c b a


By definition, M∗ is the conjugate transpose of M , so we can see it exists and we can show

that MM∗ = M∗M = SI where S = a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2. Since the rows

and columns of M are pairwise orthogonal, we know that [ri]∗[rj ] = 0 for all rows ri 6= rj .

Therefore,
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MM∗ =



a b c d e f g h

−b a d −c f −e −h g

−c −d a b g h −e −f

−d c −b a h −g f −e

−e −f −g −h a b c d

−f e −h g −b a −d c

−g h e −f −c d a −b

−h −g f e −d −c b a





a −b −c −d −e −f −g −h

b a −d c −f e h −g

c d a −b −g −h e f

d −c b a −h g −f e

e f g h a −b −c −d

f −e h −g b a d −c

g −h −e f c −d a b

h g −f −e d c −b a


= (a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2) I

Similarly, since [ci]∗[cj ] = 0 for all columns ci 6= cj , M∗M = (a2 + b2 + c2 + d2 + e2 + f2 +

g2 + h2) I.

Unfortunately, these matrices are rather small to use as a tool for encryption. Thankfully,

we can expand them by using the tensor product. The tensor product of two matrices Am×m

and Bk×k is defined as follows:

A⊗B =



a11B a12B · · · a1mB

a21B a22B · · · a2mB

...
. . .

...

am1B am2B · · · ammB


Note that A ⊗ B is an mk × mk matrix. Also, if the rows (columns) of A are pairwise

orthogonal and the rows (columns) of B are pairwise orthogonal, then the rows (columns)

A⊗B are pairwise orthogonal.
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CHAPTER 4. CRYPTOSYSTEM USING FRAME THEORY

This chapter begins with an explanation of a general cryptosystem using frame theory.

Then, it goes into the details of two particular schemes. In 2004, Miotke and Rebollo-Neira

published a theoretical private key encryption scheme using infinite frames and oversampling

of Fourier coefficients [MRN04]. In 2005, Harkens, Weber, and Westmeyer, published a set of

private key encryption schemes using finite frames and Hadamard arrays [HWW05].

In theory, this type of cryptosystem works in infinite space; however, computers and other

technological tools can only perform finite calculations. Thus, the following will be presented

in the finite complex space of dimension N .

4.1 General Cryptosystem

The general cryptosystem presented in [HWW05] is based on two orthogonal frames, X ⊂ H

and Y ⊂ K with analysis operators (defined in Section 3.1) ΘX and ΘY, respectively. The

plaintext is written as a vector which we call p and is an element of H. There is an arbitrary

“garbage” vector called g, which is an element of K. The keys in this system are X and Y, along

with their analysis operators. However, as we will show below, the recipient of the ciphertext

only needs to know the analysis operator ΘX to decode the message.

To encrypt the plaintext, the sender multiplies the plaintext vector, p = [p1, p2, ..., pm], by

ΘX and the garbage vector, g = [g1, g2, ..., gn] by ΘY. Then, he adds the two vectors together

to create the ciphertext, c. In symbols, c = ΘXp+ ΘYg.

To decrypt the ciphertext, the recipient calculates the adjoint of ΘX, denoted by Θ∗X,

which we know exists by Theorem 3.8. He then multiples the ciphertext by Θ∗X to recover the
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plaintext. This works because X and Y are orthogonal frames so Θ∗XΘY = 0. In symbols,

Θ∗Xc = Θ∗X(ΘXp+ ΘYg)

= Θ∗XΘXp+ Θ∗XΘYg

= Ip+ 0

= p

In [HWW05], the authors make several observations. One is that the two matrices, ΘX

and ΘY, can be written and created as a single matrix, Θ = (ΘX|ΘY). In this case, encryption

would be calculated as c = Θ(p ⊕ g). Another observation is that a key consisting of two

rather large orthogonal frames would be difficult to share and storage of the analysis operators

is inefficient, especially if they must remain in matrix form. The following two cryptosystems

make use of these observations in an attempt to create a better cryptosystem.

4.2 Miotke and Rebollo-Neira Cryptosystem

In [MRN04], Miotke and Rebollo-Neira use properties of Fourier coefficients to significantly

decrease the size of the key. Their scheme consists of an arbitrary signal f(t) ∈ L2[−T, T ], theN

Fourier coefficients of f(t) written in a vector g, the frame F =
{

1√
2T
eiπant/T

}
n∈Z
⊂ L2[−T, T ],

an oversampling parameter a ∈ (0, 1), and a message or plaintext vector of length m ≤ N .

The keys are simply the values of the variables a, T , N and m.

From Theorem 3.7, we know that E =
{

1√
2T
eiπnt/T

}
n∈Z
⊂ L2[−T, T ] is an orthonormal

basis for L2[−T, T ]. A similar proof shows that F = { 1√
2T
eiπant/T }n∈Z is an orthogonal basis

for L2[−T
a ,

T
a ]; note that it is not a normal set. Since 0 < a < 1, the interval [−T, T ] is

contained in the interval [−T
a ,

T
a ], so if f(t) ∈ L2[−T, T ], then f(t) ∈ L2[−T

a ,
T
a ] and can be

written as a linear combination of functions in F . For our purposes, we let F ⊂ L2[−T, T ], so

F is a tight frame for the interval [−T, T ] with frame bounds L = U = a−1. (The frame bound

was proven in a paper by Rebollo-Neira and Constantinides, see [CRN96].) Thus, a is called

the oversampling parameter because it creates a set of vectors that is not linearly independent,

but spans the space L2[−T, T ]. This is significant because it allows us to hide a message vector

in the null space of a Gram matrix as we will show below.
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Both the sender and the recipient need to calculate the analysis operator of F . Since

computers cannot function in an infinite domain, we limit the size of the analysis operator to

a N × N matrix G where gr,n = 1
2T

∫ T
−T e

−iπart/T eiπant/T dt = 〈Fn(t), Fr(t)〉. We note that

G must have a null space of dimension at least m, the length of the plaintext. Since the null

space is created by the oversampling parameter a, the dimension of N is depends on a. We

also note that G is a Gram matrix, so from Chapter 3 we know that G has positive eigenvalues.

The sender begins the encryption process by choosing an arbitrary signal, f(t) and com-

puting the N Fourier coefficients gn = a√
2T

∫ T
−T f(t)e−iπant/T dt where n = 1, ..., N . These

coefficients create the vector g = [gn]n∈[N ]. This is the noise or garbage vector, referred to in

Section 4.1. To encrypt the plaintext, p, of length m < N , the sender computes the orthonor-

malized eigenvectors corresponding to the m smallest eigenvalues of G. Then, he creates an

N ×m matrix Θ whose columns are the computed eigenvectors. The ciphertext is computed

by multiplying p by Θ and adding g, c = Θp + g. Since the columns of Θ correspond to the

smallest eigenvalues of G, the columns of Θ are in the pseudokernel of G. Thus, Θp is also in

the pseudokernel of G.

To decrypt the message, the recipient recreates the signal by taking the entries of the

ciphertext, cn and calculating f(t) =
∑N

n=1 cne
iπant/T . Next, he calculates the garbage vector,

g, that was chosen by the sender, g = [gn]n∈[N ] = a√
2T

∫ T
−T f(t)e−iπant/T dt. Then, he finds

the orthonormalized eigenvectors corresponding to the m smallest eigenvalues of the matrix

G (calculated previously) and creates Θ whose columns are the computed eigenvectors. Note

that Θ∗Θ = I because the columns are orthonormal. The message is decrypted by subtracting

the vector g from the ciphertext vector c = [cn]n∈[N ] and then multiplying the resulting vector

by Θ∗. Symbolically,

Θ∗(c− g) = Θ∗(Θp+ g − g) = Θ∗Θp = p

4.3 Harkins, Weber, and Westmeyer Cryptosystem

In [HWW05], the authors use the properties of Hadamard arrays to reduce the size of the

key. Their scheme consists of a plaintext vector p of length m, an orthogonal matrix Θ of
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dimension 2m× 2m, and a random garbage vector g of length m.

To create Θ, they choose J Hadamard arrays A1,A2, ...AJ . These arrays can be of various

sizes, so denote the dimension of Ai by di × di. From Theorem 3.8, we know di can be 1, 2, 4,

or 8. Then they create Θ by taking the tensor product of these arrays.

Θ = A1 ⊗ A2 ⊗ ...⊗ AJ

The dimension of Θ is (d1d2 · · · dJ) × (d1d2 · · · dJ) = 2m × 2m. We note that Θ can be

created from just the first row of entries in each Hadamard array, Ai. Thus, the key to this

cryptosystem is a vector of size (d1 + d2 + ...+ dJ).

Encryption begins by choosing an arbitrary garbage vector of length m. The ciphertext is

created by concatenating p and g and then multiplying by Θ, c = Θ(p⊕ g).

Decryption of the ciphertext is relatively straightforward. Since Θ is the tensor product

of Hadamard arrays which have pairwise orthogonal rows and columns by definition, we know

that Θ also has pairwise orthogonal rows and columns. Thus, Θ∗ exists such that Θ∗Θ = SI

where S =
∑2m

i=1 a
2
1i where Θ = [aii], refer to Theorem 3.8. Hence, to recover the message,

the recipient multiplies the ciphertext by 1
SΘ∗ and reads the first m values to determine the

message, 1
SΘ∗c = 1

SΘ∗Θ(p⊕ g) = p⊕ g.
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CHAPTER 5. CRYPTANALYSIS

According to Kerckhoffs’ Principle, the attacker knows the design of the cryptosystem, but

not the key. With this in mind, we can show that the general cryptosystem explained in Section

4.1 is vulnerable to a chosen plaintext attack and more importantly a known plaintext attack.

This implies that the other two cryptosystems in Sections 4.2 and 4.3 are also vulnerable to

these types of attacks. We assume the attacker knows that c = (ΘX|ΘY)(p⊕ g). He wants to

find the key, in this case the matrix (Θ∗X), so that he can decrypt any ciphertext encrypted

with this key.

5.1 Chosen Plaintext attack

In this attack, we have temporary access to the encryption machine. We assume that the

matrix (ΘX|ΘY) is fixed and will be used during future communication. We can choose any

plaintext, p, and obtain the ciphertext, c, associated with it. Since we know the length of the

message, |p|, and the length of the ciphertext, |c|, we can calculate the length of the garbage

vector, |g| = |c| − |p|. By following the steps below, we can determine ΘX

• Determine the range of ΘY. First, the adversary chooses a message vector p. Second, he

encrypts it twice to obtain ciphertexts, c0 and c1. These ciphertexts will usually not be

the same, because the garbage vector used during encryption is randomly generated each

time the message is encrypted. Third, he computes y1 = c1 − c0. We know y1 is in the

range of ΘY because y1 = (ΘX|ΘY)(p⊕ g1)− (ΘX|ΘY)(p⊕ g0) = (ΘX|ΘY)(0⊕ (g1 − g0)).

Fourth, he encrypts the message a third time to obtain ciphertext c2 and compute y2 =

c2 − c0. The adversary should continue finding vectors, yk, until he obtains a linearly

independent set of |g| vectors. This set, Y = {y1, ..., y|g|} ⊂ C|c|, is a basis for the range
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of ΘY.

• Determine the range of ΘX. First, the adversary must compute an orthonormal basis

for the orthogonal complement of Y, {w1, ..., w|p|}. Second, he encrypts a message, p1,

to obtain ciphertext, c′1. Third, he projects c′1 onto the orthogonal complement of Y,

v1 =
∑|m|

i=1〈c1, wi〉wi. We note that the vector v1 is in the range of ΘX because v1 is a

linear combination of the vectors in the orthonormal basis for Y⊥ and Y ⊕ Y⊥ = C|c|.

The adversary should make a note of the pair {p1, v1} to use in the computation of

ΘX. Fourth, he encrypts a different message, p2, and computes v2. He continues finding

vectors vi until he has a linearly independent set of |p| vectors. This set, V = {v1, ..., v|p|},

is a basis for the range of ΘX.

• Compute ΘX. Using the pairs of messages and ciphertexts, {pi, vi}, collected to create V,

the adversary has a system of linear equations that he can solve to find ΘX, (ΘX|ΘY)(pi⊕

0) = vi.

We note that the matrix norm of ΘX may not be 1 as was the case in the cryptosystem

presented in Section 4.3. Thus, the adversary must divide the entries of his future decrypted

messages by a factor of S =
∑|c|

i=1 a
2
1i where ΘX = [aii] is the first row of ΘX. Therefore,

the computation to decrypt future messages the adversary encounters using this encryption

machine is S−1(ΘX|0)∗c = S−1(ΘX|0)∗(ΘX|ΘY)(p⊕ g) = p.

5.2 Known Plaintext attack

In this attack, we have access to an unlimited number of pairs of plaintexts and their

corresponding ciphertexts. We assume that each of these pairs was created using the same

matrix (ΘX|ΘY) and that this matrix will be used in future communications. From our set of

plaintext/ciphertext pairs {(pi, ci)}, we choose N pairs such that the vectors pi are linearly

independent and span CN . Using these pairs, we can solve the system of linear equations

Θ∗Xci = pi to find a unique matrix Θ∗X. This matrix will allow us to decrypt any ciphertext

that is created using this particular cryptosystem.
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CHAPTER 6. CONCLUSION AND FUTURE WORK

In [HWW05], they conclude that the main problem with this type of cryptosystem is the

linearity. We agree; however, in the course of our research, we found that Hadamard matrices

have been used in cryptography. Since Hadamard arrays are similar to Hadamard matrices,

we wonder if these ideas could be combined to develop a secure cryptosystem.

In his book Hadamard Matrices [Hor06], Horadam explains that almost bent functions

provide maximum possible resistance to both linear and differential cryptanalysis attacks

and thus are good functions to use in cryptography. He begins with a Boolean function

f : V (n, 2) → GF (2) and defines a bent function as a function whose absolute value of the

Walsh-Hadamard Transform is constant. He then shows that a bent function is equivalent to

a Hadamard matrix. He states a formula to calculate the resistance of f to a linear attack

which translates into nonlinearity conditions on the Walsh-Hadamard Transform. We believe

further exploration into this nonlinear property of Hadamard matrices may provide insight

into finding a way to use frame theory and Hadamard arrays successfully in encryption.

In summary, the proposed general cryptosystem using finite frames and the cryptosystems

presented in [MRN04] and [HWW05] are not secure with respect to a chosen plaintext attack

or a known plaintext attack. A cryptanalyst can use the linearity of these systems to find

the key, so these systems should not be used for cryptography unless someone finds a way to

introduce nonlinearity into the algorithm.
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